1	
2	The Partial Molal Volume and Compressibility of TRIS and TRIS-HCl in
3	water and 0.725m NaCl as a function of temperature
4	
5	Carmen Rodriguez*, Fen Huang and Frank J. Millero
6	Rosenstiel School of Marine and Atmospheric Chemistry
7	University of Miami
8	4600 Rickenbacker Causeway
9	Miami, FL 33149
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	*Corresponding author email address: crodriguez@rsmas.miami.edu.

 \odot 2015. This manuscript version is made available under the Elsevier user license http://www.elsevier.com/open-access/userlicense/1.0/

Abstract The apparent molal volumes and compressibilities of TRIS and TRIS-HCl have been determined in water (5 to 45°C) and 0.725m NaCl (5 to 25°C). The changes in the volume (ΔV) and compressibility ($\Delta \kappa$) for the dissociation of TRIS-H⁺ $TRIS-H^+ = TRIS + H^+$ as functions of temperature in water and 0.725m NaCl have been determined from these measurements. The values of ΔV and $\Delta \kappa$ have been used to determine the effect of pressure on the dissociation constant for TRIS-H⁺ (K^P/K^0). $\ln(K^P/K^0) = -\Delta V/(RT) P + 0.5 \Delta \kappa/(RT) P^2$ These results will be useful in the calibration of pH systems making *in-situ* measurements at high pressure in seawater. In 0.725m NaCl at 5°C and a pressure of 2000 bar, the dissociation constant is reduced by 29%. **KEYWORDS:** Seawater pH; TRIS buffer; high pressure; dissociation constant; partial molal volume; compressibility.

54 1. Introduction

55 The absorption of atmospheric CO_2 by the world's oceans and has led to a measurable 56 change in oceanic pH, often referred to as *ocean acidification*. To understand the change in 57 ocean chemistry from the surface to the deep ocean, traditional methods have relied on depth-58 discrete seawater samples collected onboard ships, with subsequent analysis performed in 59 laboratories at atmospheric pressure. In recent years, autonomous sensors have been developed 60 to analyze the *in-situ* chemistry of the ocean, including measuring the pH directly (Martz et al., 61 2010; Bresnahan et al., 2014). The sensor technologies to vertically-profile the pH of a water-62 column *in-situ* are still emerging. Nevertheless, these pH sensors should contribute to our 63 understanding of the state of oceanic pH and overall trends in *ocean acidification*. As the 64 measurements obtained from the sensors reflect the physical conditions of the surrounding 65 waters, their influences should be accounted for when making calculations of chemical 66 equilibrium systems.

TRIS buffers have proved useful in calibrating pH electrodes and indicators for natural
waters (Ramette et al., 1977; Dickson, 1993; Millero et. al., 1993; Clayton and Byrne, 1993;
Pratt, 2014). The buffer system is typically composed of an equimolal ratio of the neutral
species, TRIS, and the protonated species, TRIS-H⁺, which may come in the form of a TRIS-HCl
salt. The dissociation of TRIS-H⁺ is maintained by equilibrium between the two species

$$72 TRIS-H^+ = TRIS + H^+ (1)$$

For an equimolal buffer solution, the pH can be calculated directly from the pK via the Henderson-Hasselbalch relationship: $pH = pK = -\log(K)$, where (*K*) is the dissociation constant for the reaction above. The temperature- and salinity-dependence of (*K*) for TRIS-H⁺

dissociation in natural waters at 1 atm pressure have been characterized previously, with a precision on the order of ± 0.0004 p*K* units (Datta et al., 1963; Ramette et al., 1977; Dickson, 1993; DelValls and Dickson, 1998; Foti et al., 1999 reformulated by Millero, 2009, and Millero et al., 2009). The effect of pressure (*P*) on TRIS-H⁺ dissociation has not been thoroughly examined; however it can influence a reaction through changes in the volume (*V*) and compressibility ($\kappa = -\frac{\partial V}{\partial P}$). It is possible to estimate the effect of pressure on the dissociation constant (*K*) of a weak acid with

83
$$\ln(K^P/K^0) = -\Delta V/(RT) P + 0.5 \Delta \kappa/(RT) P^2$$
 (2)

84 where the superscript on the dissociation constant indicates the gauge pressure (P = 0 at 1atm or 85 1.013 bar). *T* is the absolute temperature (in Kelvin), and *R* is the universal gas constant 86 (83.1441 cm³ bar mol⁻¹ K⁻¹). The change in the volume (ΔV) and compressibility ($\Delta \kappa$) for the 87 dissociation (**equation 1**) are determined by differencing the values of the products and reactants

88
$$\Delta V = \overline{V}^{0}(\text{TRIS}) + \overline{V}^{0}(\text{H}^{+}) - \overline{V}^{0}(\text{TRIS}-\text{H}^{+})$$
(3)

89
$$\Delta \kappa = \overline{\kappa}^{0}(\text{TRIS}) + \overline{\kappa}^{0}(\text{H}^{+}) - \overline{\kappa}^{0}(\text{TRIS}-\text{H}^{+})$$
(4)

90 The bar denotes the partial molal property ($\overline{V}(i) = \partial V / \partial n_i$ and $\overline{\kappa}(i) = \partial \kappa / \partial n_i$, where *V* and κ are 91 the solution volume and compressibility, respectively, and n_i is a mole of species (*i*)). The 92 superscript (0) indicates reference conditions of infinite dilution concentration and atmospheric 93 pressure (1.1013 bar).

94 Previous studies have demonstrated the success of this method for estimating the 95 influence of pressure on the dissociation of weak acids such as phosphoric and boric acids 96 (Millero et al., 2010, 2012). The values of ΔV and $\Delta \kappa$ can also be determined from direct 97 measurements of the effect of pressure on a dissociation constant. For example, Hopkins et al.
98 (2000) directly measured the effect of pressure on the dissociation of thymol blue indicator (a
99 reagent used in pH measurements) and derived the associated change in volume and
100 compressibility.

101 There is limited data available for the change in volume (ΔV) for TRIS-H⁺ dissociation in 102 water (Neuman et al., 1973; Kitamura and Itoh, 1987; Ford et al., 2000); however, the change in 103 volume due to pressure, or the compressibility ($\kappa = -\frac{\partial V}{\partial P}$), has not been determined. In this 104 paper, we have made measurements of the density and sound speed of TRIS and TRIS-HCl to determine the infinite dilution partial molal volumes (\overline{V}^0) and compressibilities ($\overline{\kappa}^0$) as a 105 106 function of temperature in water (5 to 45°C) and in 0.725m NaCl (5 to 25°C). The results have 107 been used to estimate the effect of pressures up to 2000 bar on the dissociation of TRIS-H⁺ in 108 water and 0.725m NaCl solutions. The results found for 0.725 m NaCl solutions can be used to 109 examine the TRIS buffer equilibrium prepared in artificial seawater (Owen and Brinkley, 1941), 110 thus allowing for the *in situ* calibration of pH sensors in seawater at high pressure.

111 **2. Experimental**

112 *2.1. Density*

All solutes used in this study were reagent grade (>99% purity), and used without further purification. The TRIS and NaCl were from Sigma-Aldrich and the TRIS-HCl salt was from MP Biomedicals. The densities of the solutions (ρ) have been measured on an Anton Paar 5000 vibrating tube densimeter. The temperatures were maintained to $\pm 0.002^{\circ}$ C and measured with a Platinum thermometer embedded in the system. The densimeter was calibrated at 25°C with deionized water (Millipore Super Q) and dry air and the measurements were made with a precision of \pm 9 ppm. The values for the density of water (ρ_0) are taken from Kell (1975) adjusted to the 1990 temperature scale (Millero and Huang, 2009) and are embedded in the densimeter. The densities of water and 0.725m NaCl agree with the published values of Millero and Huang (2009) and Connaughton et al. (1986) to \pm 7 ppm and \pm 13 ppm, respectively.

123 Separate stock solutions of TRIS and TRIS-HCl were prepared in water and 0.725m NaCl with molalities (mol kg- H_2O^{-1}) starting near 1 molal and diluted by weight. Measurements 124 125 in seawater were inhibited by the low solubilities of TRIS, which is likely a product of 126 precipitation with calcium or magnesium. As suggested by Owen and Brinkley (1941), solutions 127 of 0.725m NaCl can be used to represent average seawater at the same ionic strength. The 128 densities ($\Delta \rho = \rho - \rho_0$) were examined by subtracting the density of the solvent (ρ_0 for water, or ρ_2 for 0.725m NaCl) from the solution (ρ). They were measured as a function of temperature 129 from 5 to 45°C in water, and from 5 to 25°C in 0.725m NaCl. The results for $10^3 \Delta \rho$ (g cm⁻³) in 130 131 water are given in **TABLE 1** and the results in 0.725m NaCl are given in **TABLE 2**.

132 2.2. Sound Speeds

133 Separate stock solutions of TRIS and TRIS-HCl were prepared in water and 0.725m 134 NaCl and the sound speeds were measured as a function of temperature (5 to 45°C in water; 5 to 25°C in 0.725m NaCl). The sound speeds have been measured with a sing-around sound 135 velocimeter at 2 MHz (Nusonic, Inc.) in a 250 cm³ water-jacketed cell. The temperatures were 136 137 controlled to $\pm 0.002^{\circ}$ C with a Thermo Scientific bath and measured with a Guildline digital Pt 138 resistance thermometer. The velocimeter has two transducers (a sender and a receiver). The pulse repetition frequency (f, s^{-1}) was measured with a BK Precision Frequency counter. The 139 sound speed $(U, \text{m s}^{-1})$ is related to the measured frequency by (Millero and Kubinski, 1975) 140

141
$$1/f = \ell/U + \tau$$
 (5)

)

142 where ℓ is the effective path length between the transducers and τ is the electronic delay time. 143 The system was calibrated at each temperature with 18 M Ω ion exchange water (Millipore Super 144 Q) using the equation for the sound speed of pure water (U_0) of Del Grosso and Mader (1972). The values of $\ell = 0.011849 \pm 0.000002$ m and $\tau = 3.465 \pm 0.03$ E-7 s were determined at 25°C 145 using $U_0 = 1496.67 \text{ m s}^{-1}$. The values for the sound speeds ($\Delta U = U - U_0$) were calculated from 146 147 (Millero and Kubinski, 1975)

148
$$U - U_0 = \ell \left(f - f_0 \right) / \left[(1 - f \tau) \left(1 - f_0 \tau \right) \right]$$
(6)

149 where the pure solvent is demarcated with the subscript (U_0 , f_0 for water; U_2 , f_2 for 0.725m 150 NaCl), and U is the sound speed of solution. The sound speed of 0.725m NaCl at 25° C had a value of $U_2 = 1540.83$ m s⁻¹ which is in agreement (± 0.01 m s⁻¹) with the literature values 151 (Millero, et al, 1987). The average precision of the sound speed measurements was \pm 0.07 m s⁻¹. 152 153 Results of ΔU measured in water and 0.725m NaCl are given in TABLE 3 and TABLE 4, 154 respectively. They have been used to calculate the adiabatic compressibility (β_s) of the solution

155
$$\beta_S = 1/(\rho \ U^2)$$
 (7)

156 It should be noted that the adiabatic compressibility (β_s) is not exactly equal to the isothermal 157 compressibility (β_T) which requires accurate values for the expansibility ($\alpha = -\frac{\partial \rho}{\partial T}$) and heat capacity (C_P) that are often unavailable. 158

159
$$\beta_T = \beta_S + \alpha^2 T / \rho C p \tag{8}$$

160 Ultimately, values of β_T or β_S will be used to determine the partial molal compressibilities at 161 infinite dilution ($\overline{\kappa}^0$). Desnoyers and Phillips (1971) have derived a relationship to convert 162 between the isothermal ($\overline{\kappa}_T$) and adiabatic ($\overline{\kappa}_S$) partial molal compressibilities at 25°C

163
$$10^4 \ \overline{\kappa}_{\rm T}^{0} = 10^4 \ \overline{\kappa}_{\rm S}^{0} + 36.79 \ \overline{E}^{0} - (1.135 \ {\rm x} \ 10^{-3}) \ \overline{C_P}^{0}$$
 (9)

where \overline{E}^{0} is the partial molal expansibility ($\overline{E}(i) = \partial \alpha / \partial n_i$) at infinite dilution. The difference 164 between the values of $\overline{\kappa}_{T}$ and $\overline{\kappa}_{S}$ for various solutes in water has been shown to be on the order 165 of 10% or less (Desnoyers and Phillips, 1971; Mathieson and Conway, 1974; Millero and Huang, 166 2011). Since reliable values for the expansibility (α) and heat capacity (*Cp*) of TRIS and TRIS-167 HCl are not available, we have assumed equivalency between β_S and β_T , and hereafter leave off 168 the subscript (s). The adiabatic compressibility at 25°C for water (β_0) was measured as 44.775 x 169 10^{-6} bar⁻¹ and the value for 0.725m NaCl was measured as $\beta_2 = 41.061 \times 10^{-6}$ bar⁻¹. These are 170 within ± 0.001 and 0.002 x 10⁻⁶ bar⁻¹, respectively, of the literature values (Kell, 1975; Millero et 171 172 al., 1980).

173 **3. Results**

174 The apparent molal volumes (${}^{\phi}V$) and apparent molal adiabatic compressibilities (${}^{\phi}\kappa$) of 175 TRIS and TRIS-HCl in water have been determined from the density (ρ) and compressibility (β) 176 measurements

177
$${}^{\phi}V(i) = 1000(\rho_0 - \rho)/(\rho \,\rho_0 \,m_i) + M_i/\rho$$
(10)

178
$${}^{\varphi}\kappa(i) = 1000(\beta \rho_0 - \beta_0 \rho)/(\rho \rho_0 m_i) + \beta M_i/\rho$$
(11)

The m_i is the molality and M_i the molecular weight of solute (*i*) ($M_i = 121.14 \text{ g mol}^{-1}$ for TRIS and $M_i = 157.6 \text{ g mol}^{-1}$ for TRIS-HCl) and the other terms have been defined previously. Since we are interested in measurements relative to pure water, the apparent molal volumes and compressibilities in 0.725m NaCl have been determined from

183
$${}^{\phi}V(i) = 1000(\rho_2 - \rho)/(\rho \rho_2 m_3) + M_3/\rho + m_2 M_2/m_3 (1/\rho - 1/\rho_2)$$
 (12)

184
$${}^{\varphi}\kappa(i) = 1000(\beta \rho_2 - \beta_2 \rho)/(\rho \rho_2 m_3) + \beta M_3/\rho + m_2 M_2/m_3 (\beta/\rho - \beta_2/\rho_2)$$
(13)

185 Where ρ and β are the density and (adiabatic) compressibility, respectively, of the mixture; the 186 subscript (2) denotes the solvent (0.725m NaCl); and the subscript (3) denotes the solute (TRIS 187 or TRIS-HCl). For 0.725m NaCl, $m_2 = 0.725$ mol kg-H₂O⁻¹ and $M_2 = 54.882$ g mol⁻¹. The 188 apparent molal volumes and compressibilities were measured with an average precision of \pm 0.01 189 cm³ mol⁻¹ and \pm 0.19 x 10⁻⁴ cm³ mol⁻¹ bar⁻¹, respectively.

The results for ${}^{\phi}V(i)$ and ${}^{\phi}\kappa(i) \ge 10^4$ calculated in water and 0.725m NaCl are given in 190 191 **TABLES 1-4**. The apparent molal compressibilities of TRIS and TRIS-HCl in water are shown 192 as a function of molality and temperature in **FIGURE 1**. In general, the apparent molal properties are positively-correlated with temperature and concentration. The results of ${}^{\phi}V(i)$ and 193 ${}^{\phi}\kappa(i)$ measured at 25°C are shown as a function of molality in **FIGURE 2**. The poorer fits as 194 $m \rightarrow 0$ mol kg-H₂O⁻¹ are likely due to the greater uncertainty in the measurements of the densities 195 196 and sound speeds relative to pure water in dilute solutions. At a given temperature, the apparent 197 molal volumes display stronger concentration-dependence in 0.725m NaCl solutions than in H₂O: at high solute concentration, values of ${}^{\phi}V(i)$ in 0.725m NaCl are higher than in water; in 198 dilute solutions, values of ${}^{\phi}V(i)$ approach lower values in 0.725m NaCl than in pure water. The 199

apparent molal compressibilities for both salts are offset to more positive values in 0.725m NaCl
versus water.

202 4. Data Treatment

203 *4.1. Fitting Equations*

Values for the apparent molal volume and compressibility of TRIS-HCl in water have been fitted to the Pitzer model. The Pitzer equations (1991) are ideal for representing the properties of electrolytes in solutions because they can account for the potential contributions of various ionic interactions. When the solution involves a single electrolyte dissolved in water, the model takes a simplified form

209
$${}^{\phi}X_{MY} = \overline{X} {}^{0}{}_{MY} + \nu |Z_M Z_Y| A_X / (2b) \ln(1 + bI^{1/2}) + 2RTm \nu_M \nu_Y [\beta_{MY} {}^{(0)X} + \beta_{MY} {}^{(1)X} g(\alpha) + m$$
210 $C_{MY} {}^{X}]$
(14)

211 Where, X = V or κ : The bar represents the partial molal property, the superscript zero denotes 212 the infinite dilution value in water (note, $\overline{V}^{0} = {}^{\phi}V^{0}$), and $\beta^{(0)X}$, $\beta^{(1)X}$, and C^{X} are adjustable Pitzer 213 ionic interaction parameters. The values of $v = v_{M} + v_{Y}$ are the number of ions M or Y with 214 charge Z_{M} and Z_{Y} ($M = \text{TRIS-H}^{+}$; $Y = \text{CI}^{-}$), b is a parameter set to 1.2 kg^{1/2} mol^{-1/2}, and I is the 215 ionic strength. The value of $g(\alpha)$ is given by

216
$$g(\alpha) = 2/\alpha^2 [1 - (1 + \alpha) \exp(-\alpha)]$$
 (15)

217 where $\alpha = 2 I^{1/2}$.

Values for the Debye-Huckel limiting slopes, A_V and $A_{\kappa,S}$, are taken from the equations of Pierrot and Millero (2000) and Rodriguez and Millero (2013), respectively, as a function of temperature $(t, {}^{\circ}C)$

221
$$A_V (\text{cm}^3 \text{kg}^{1/2} \text{mol}^{-3/2}) = 1.50619 + 0.0130073 t + 4.8307\text{E-5} t^2 + 8.95087\text{E-7} t^3$$

222 $- 3.7279\text{E-9} t^4 + 2.3942\text{E-11} t^5$ (16)

223
$$10^4 A_{\kappa,s} (\text{cm}^3 \text{kg}^{1/2} \text{mol}^{-3/2} \text{bar}^{-1}) = -2.187 - 0.105314 t + 1.46994\text{E}-03 t^2 - 7.82165\text{E}-05 t^3$$

224 + 1.70244E-06
$$t^4$$
 - 2.253236E-08 t^3 + 1.51313E-10 t^6 - 4.1478E-13 t^7 (17)

Each adjustable parameter, $Y^X = \overline{X}^0$, $\beta^{(0)X}$, $\beta^{(1)X}$, and C^X , for TRIS-HCl in water has been fitted to a polynomial function of absolute temperature (*T*, in Kelvins) with

227
$$Y^{X} = \sum_{j} a_{j} \left(T - T_{R} \right)^{j}$$
(18)

228 Where *j* is an integer (j = 0, 1, 2, 3), X = V or κ ; and $T_R = 298.15$ K is the reference temperature. 229 The coefficients and standard errors of the fits are given in **TABLE 5**.

Values for the apparent molal volumes and compressibilities of TRIS-HCl in 0.725m
NaCl, TRIS in water, and TRIS in 0.725m NaCl have been fitted to functions of the molality
with

233 TRIS-HCl in 0.725m NaCl:
$${}^{\phi}X(i) = \overline{X}{}^{0}(i) + A_{j}m_{i}{}^{1/2} + B_{j}m_{i}$$
 (19)

234 TRIS in water and 0.725m NaCl:
$${}^{\phi}X(i) = \overline{X}{}^{0}(i) + B_{j}m_{i} + C_{j}m_{i}^{2}$$
 (20)

where X(i) = V(i) or $\kappa(i)$, the bar represents the partial molal property, and the superscript zero denotes the infinite dilution value in water or 0.725m NaCl. The values of $Y^X = \overline{X}^0, A_j, B_j$, or C_j

237	have been fitted to polynomial functions of absolute temperature as in equation 18. The
238	standard errors and coefficients for the fits of TRIS-HCl in 0.725m NaCl are given in TABLE 6,
239	and those for TRIS in water and 0.725m NaCl are given in TABLE 7.
240	4.2. Infinite Dilution Values
241	The infinite dilution partial molal volumes (\overline{V}^0) and compressibilities ($\overline{\kappa}^0$) have been
242	determined by extrapolating equations 14, 19, and 20 to $m_i = 0$ mol kg-H ₂ O ⁻¹ . The results for
243	the values of \overline{V}^0 and $\overline{\kappa}^0$ are given as a function of temperature in TABLE 8 . The values of \overline{V}^0
244	are lower in 0.725m NaCl solutions than in pure water, whereas the values of $\overline{\kappa}^0$ are more
245	positive in 0.725m NaCl solutions than in water. The partial molal volumes and
246	compressibilities increase with temperature, which suggests greater dehydration as temperature
247	is increased (Ward and Millero, 1974).

248 5. Effect of Pressure on Acid Dissociation

Values for the infinite dilution partial molal volumes (\overline{V}^{0}) and adiabatic compressibilities ($\overline{\kappa}^{0}$) of TRIS and TRIS-HCl have been used to determine the change in the volume (ΔV) and compressibility ($\Delta \kappa$) from the dissociation of TRIS-H⁺ using **equations 3 & 4**. The partial molal property for the protonated species, \overline{X}^{0} (TRIS-H⁺), where $\overline{X}^{0} = \overline{V}^{0}$ or $\overline{\kappa}^{0}$, was determined by subtracting the value for chloride (Cl⁻) from the value for TRIS-HCl

254
$$\overline{X}^{0}(\text{TRIS-H}^{+}) = \overline{X}^{0}(\text{TRIS-HCl}) - \overline{X}^{0}(\text{Cl}^{-})$$
 (21)

Values for $\overline{X}^{0}(Cl^{-})$ in water were calculated from the equations of Hershey et al. (1984); and values for $\overline{X}^{0}(Cl^{-})$ in 0.725m NaCl were calculated from the equations of Millero (1983). It has been suggested that the change in volume for a reaction (ΔV) is correlated with the charge on the reactant (Kitamura and Itoh, 1987). As the TRIS buffer reaction involves a single proton exchange, the value of ΔV should be minimal. Gayána et al. (2013) recently compiled literature values of ΔV for the dissociation of TRIS-H⁺ in water at 25°C. Our result of $\Delta V = 4.38$ cm³ mol⁻¹ at 25°C is in agreement with the average literature value of $\Delta V \sim 4$ cm³ mol⁻¹. The results for ΔV and $\Delta \kappa$ in water and 0.725m NaCl at each temperature have been tabulated in

TABLE 9. They have been fitted to functions of temperature $(t, {}^{\circ}C)$

264
$$\Delta V (\text{cm}^3 \text{ mol}^{-1}; \text{ in water}) = 4.074 - 8.066\text{E} \cdot 02 t + 5.474\text{E} \cdot 03 t^2 - 7.04\text{E} \cdot 05 t^3$$
 (22)

265
$$\Delta \kappa (\text{cm}^3 \text{ mol}^{-1} \text{ bar}^{-1}; \text{ in water}) = 17.66 - 2.98\text{E-}01 t + 1.257\text{E-}02 t^2 - 1.037\text{E-}04 t^3$$
 (23)

266
$$\Delta V (\text{cm}^3 \text{ mol}^{-1}; \text{ in } 0.725 \text{ m NaCl}) = 4.872 + 0.033 t - 1.6\text{E-}04 t^2$$
 (24)

267
$$\Delta \kappa (\text{cm}^3 \text{ mol}^{-1} \text{ bar}^{-1}; \text{ in } 0.725 \text{ m NaCl}) = 9.24 + 0.547 t - 0.0026 t^2$$
(25)

The effect of pressure on the dissociation constant (K^{P}) in water and 0.725m NaCl has 268 been estimated to 2000 bar from the values of ΔV and $\Delta \kappa$ using equation 2. Because ΔV is 269 positive, pressure acts to reverse the dissociation and the value of K^{P} is reduced. The results for 270 the estimation of K^P/K^0 in water and 0.725m NaCl as a function of temperature are given in 271 272 **TABLE 10.** The percent reduction in the dissociation constant has been calculated (% reduction = 100 x $[1 - K^P/K^0]$) and is shown as a function of pressure at 5 and 25°C in **FIGURE 3**. 273 274 Pressure is estimated to reduce the dissociation reaction by up to 29% in 0.725m NaCl at 5°C and 275 2000 bar. This is equivalent to an increase of +0.15 in the pK for TRIS-H⁺ dissociation (pK = - $\log K$), and is significant in terms of the precision of the reference equations based on temperature 276

and molality alone (Ramette et al., 1977; DelValls and Dickson, 1998; Foti et al., 1999; Millero
et al., 2009).

When measurements of the sound speeds are unavailable, the effect of pressure on the dissociation constant may be estimated with the relationship given in **equation 2** and the values for ΔV only. In **FIGURE 4**, the estimated reduction in K^P by either including or omitting the compressibility values in 0.725m NaCl at 25°C has been plotted and shows that the change in compressibility becomes significant starting at pressures ~ 600 bar. At high pressures, neglecting the compressibility change leads to an overestimation of the effect of pressure on the dissociation constant.

286 **6.** Conclusions

287 Buffers such as TRIS/TRIS-HCl are often selected in biochemical and chemical studies 288 because they are expected to resist the influence of pressure. In this study, the changes in 289 volume and compressibility from the dissociation of TRIS-H⁺ at atmospheric pressure have been 290 measured to estimate the effect of pressure on the equilibrium state. The results show that high 291 pressures can significantly reduce the dissociation equilibrium (29% reduction in K determined 292 at 2000 bar in 0.725m NaCl). These measurements are relevant to the conditions of the upper 2 293 km of the ocean in which *in-situ* pH sensors can be deployed. New equations have been derived 294 to account for the influence of pressure on the dissociation constant and should be used in 295 conjunction with the existing equations valid at atmospheric pressure to better constrain the 296 equilibrium of the TRIS buffer system. These equations will aid in the direct calibration of in-297 situ pH sensors at high pressures in natural waters. Direct pressure measurements on the

298 dissociation constant of TRIS-H⁺ in water and 0.725m NaCl would be useful in validating these

estimations.

300 Acknowledgement. The authors wish to thank the oceanographic section of the National

- 301 Science Foundation and the National Oceanic and Atmospheric Administration for supporting
- 302 our Marine Physical Chemical Studies. In addition the authors would like to thank two
- 303 anonymous reviewers for their helpful comments.

304 **References**

- 305 Bresnahan Jr., P.J., Martz, T.R., Takeshita, Y., Johnson, K.S., LaShomb, M., 2014. Best
- practices for autonomous measurement of seawater pH with the Honeywell Durafet. Methods in
 Oceanography. 9, 44-60.
- 308 Clayton, T.D., Byrne, R.H., 1993. Spectrophotometric seawater pH measurements: total
- 309 hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea
- 310 Research Part I: Oceanographic Research Papers. 40, 2115-2129.
- 311 Connaughton, L., Hershey, J.P., Millero, F., 1986. PVT properties of concentrated aqueous
- 312 electrolytes: V. Densities and apparent molal volumes of the four major sea salts from dilute
- solution to saturation and from 0 to 100°C. J. Solution Chem. 15, 989-1002.
- Datta, S.P., Grzybowski, A.K., Weston, B.A., 1963. The acid dissociation constant of the protonated form of tri(hydroxymethyl)methylamine. J. Chem. Soc., 792-796.
- 316 Del Grosso, V.A., Mader, C.W., 1972. Speed of Sound in Pure Water. J. Acoust. Soc. Am. 52,317 1442-1446.
- 318 DelVals, T.A., Dickson, A.G., 1998. The pH of buffers based on 2-amino-2-hydroxymethyl-1, 3-
- propanediol ("tris") in synthetic seawater. Deep-Sea Research Part I: Oceanographic Research
 Papers. 45, 1541–1554.
- 321
- 322 Desnoyers, J.E., Philip, P.R., 1972. Isothermal compressibilities of aqueous solutions of
- tetraalkylammonium bromides. Can. J. Chem. 50, 1094–1096.
- 324
- Dickson, A.G., 1993. pH buffers for sea water media based on the total hydrogen ion
- 326 concentration scale. Deep Sea Research Part I: Oceanographic Research Papers. 40, 107-118.

327 Ford, T.D., Call, T.G., Origlia, M.L., Stark, M.A., Woolley, E.M., 2000. Apparent molar

328 volumes and apparent molar heat capacities of aqueous 2-amino-2- hydroxymethyl-propan-1,3-

- 329 diol (TRIS or THAM) and THAM plus equimolal HCl. The Journal of Chemical
- 330 Thermodynamics. 32, 499-516.
- Foti, C., Rigano, C., Sammartano, S., 1999. Analysis of thermodynamic data for complex
- formation: Protonation of THAM and fluoride ion at different temperatures and ionic strengths.ANNALI DI CHIMICA. 89, 87-98.
- 334 Gayána, E., Condóna, S., Álvareza, I., Nabakabayab, M., Mackey, B., 2013. Effect of Pressure-
- 335 Induced Changes in the Ionization Equilibria of Buffers on Inactivation of Escherichia coli and
- 336 Staphylococcus aureus by High Hydrostatic Pressure. Appl. Environ. Microbiol. 79, 4041-4047.
- 337 Hershey, J.P., Damesceno, R., Millero, F.J., 1984. Densities and compressibilities of aqueous
- HCl and NaOH from 0 to 45°C. J. Solution Chem. 13, 825-848.
- Hopkins, A.E., Sell, K.S., Soli, A.L., Byrne, R.H., 2000. In-situ spectrophotometric pH
- measurements: the effect of pressure on thymol blue protonation and absorbance characteristics.
 Mar.Chem. 71, 103-109.
- Kell, G.S., 1975. Density, thermal expansivity, and compressibility of liquid water from 0° to
- 343 150°C: Correlations and tables for atmospheric pressure and saturation reviewed and expressed
- on 1968 temperature scale. J. Chem. Eng. Data. 20, 97-105.
- Kitamura, Y., Itoh, T., 1987. Reaction volume of protonic ionization for buffering agents.
 Prediction of pressure dependence of pH and pOH. Journal of Solution Chemistry. 16, 715-725.
- 247 Marte TD Comment IC Jahren KS 2010 Tarting the Hansen H Dareful & for exercise
- Martz, T.R., Connery, J.G., Johnson, K.S., 2010. Testing the Honeywell Durafet® for seawater
 pH applications. Limnology and Oceanography: Methods. 8, 172-184.
- Mathieson, J.G., Conway, B.E., 1974. Partial molal compressibilities of salts in aqueous solution
 and assignment of ionic contributions. J. Soln. Chem. 3, 455–477.
- Millero, F.J., Huang, F., 2009. The density of seawater as a function of salinity (5 to 70 g kg⁻¹) and temperature (273.15 to 363.15 K). Ocean Sci. 5, 91-100.
- Millero, F.J., Kembro, A., Lo Surdo, A., 1980. Adiabatic partial molal compressibilities of electrolytes in 0.725 m NaCl solutions at 25 °C. J.Phys.Chem. 84, 2728-2734.
- Millero, F.J., 1983. CHAPTER 43 Influence of Pressure on Chemical Processes in the Sea, in: RILEY, J.P., CHESTER, R. (Eds.), *Chemical Oceanography*, 2nd ed. Academic Press, pp. 1-88.
- Millero, F.J., Kubinski, T., 1975. Speed of sound in seawater as a function of temperature and salinity at one atmosphere. J. Acoust. Soc. Am. 57, 312-319.
- 359 Millero, F.J., Ward, G.K., Surdo, A.L., Huang, F., 2012. Effect of pressure on the dissociation 360 constant of boric acid in water and seawater. Geochim.Cosmochim.Acta. 76, 83-92.
 - 16

- 361 Millero, F.J., Huang, F., Lo Surdo, A., Vinokurova, F., 2010. Partial Molal Volumes and
- 362 Compressibilities of Phosphoric Acid and Sodium Phosphates in 0.725 Molal NaCl at 25°C. J.
- 363 Phys. Chem. 114, 16099-16104.
- Millero, F. J., 2009. The use of the Pitzer equations to examine the dissociation of TRIS in NaCl
 solutions. J. Chem. Eng. Data. 54, 342–344.
- Millero, F.J., DiTrolio, B., Suarez, A.F., Lando, G., 2009. Spectroscopic measurements of the pH in NaCl brines. Geochim.Cosmochim.Acta. 73, 3109-3114.
- Millero, F.J., Zhang, J., Fiol, S., Sotolongo, S., Roy, R.N., Lee, K., Mane, S., 1993. The use of buffers to measure the pH of seawater. Mar.Chem. 44, 143-152.
- 370 Millero, F.J., Vinokurova, F., Fernandez, M., Hershey, J.P., 1987. PVT properties of
- 371 concentrated electrolytes. VI. The speed of sound and apparent molal compressibilities of NaCl,
- 372 Na₂SO₄, MgCl₂, and MgSO₄ solutions from 0 to 100°C. Journal of Solution Chemistry. 16, 269-
- 373 284.
- Millero, F.J., Huang, F. 2011. The effect of pressure on transition metals in seawater. Deep-Sea
 Research I. 58, 298–305.
- 270 Resource 1, 200, 270, 2001
- Neuman, R.C., Kauzmann, W., Zipp, A., 1973. Pressure dependence of weak acid ionization in
 aqueous buffers. J. Phys. Chem. 77, 2687-2691.
- Owen, B.B., Brinkley, S.R., 1941. Calculation of the Effect of Pressure upon Ionic Equilibria in
 Pure Water and in Salt Solutions. Chem. Rev. 29, 461-474.
- Pierrot, D., Millero, F., 2000. The Apparent Molal Volume and Compressibility of Seawater Fit
 to the Pitzer Equations. J. Solution Chem. 29, 719-742.
- Pitzer, K.S., 1991. Ion interaction approach: theory and data correlation, in: Pitzer, K.S. (Ed.),
 Activity Coefficients in Electrolyte Solutions, 2nd ed. CRC Press, Boca Raton, pp. 279-434.
- Pratt, K.W., 2014. Measurement of pHT values of TRIS buffers in artificial seawater at varying
 mole ratios of TRIS:TRIS·HCl. Mar.Chem. 162, 89-95.
- 386 Ramette, R.W., Culberson, C.H., Bates, R.G., 1977. Acid-base properties of
- 387 TRIS(hydroxymethyl)aminomethane (TRIS) buffers in sea water from 5 to 40°C. Anal. Chem.
 388 49, 867-870.
- Rodriguez, C., Millero, F., 2013. Estimating the Density and Compressibility of Seawater to
 High Temperatures Using the Pitzer Equations. Aquatic Geochemistry. 19, 115-133.
- Ward, G.K., Millero, F.J., 1974. The effect of pressure on the ionization of boric acid in aqueous solutions from molal-volume data. J. Soln. Chem. 3, 417-430.

]	FRIS		TRIS-HCl					
Temp.	m	$10^3 \Delta \rho^a$	${}^{\phi}V$	Temp.	m	$10^3 \Delta ho^{b}$	ϕ_V		
(°C)	(mol kg ⁻¹)	$(g \text{ cm}^{-3})$	(cm ³ mol ⁻¹)	(°C)	(mol kg ⁻¹)	$(g \text{ cm}^{-3})$	$(\mathrm{cm}^3 \mathrm{mol}^{-1})$		
5	0.0459	1.449	89.42	5	0.0270	1.499	101.89		
5	0.1340	4.165	89.68	5	0.0997	5.335	103.55		
5	0.2875	8.799	89.75	5	0.1501	7.940	103.87		
5	0.3898	11.796	89.82	5	0.2542	13.190	104.33		
5	0.5741	17.000	90.00	5	0.4108	20.727	104.97		
5	0.6504	19.093	90.06	5	0.5981	29.377	105.39		
5	0.9253	26.470	90.15	5	0.6942	33.668	105.55		
5	1.1282	31.714	90.17	5	0.7889	37.838	105.64		
5	1.2012	33.587	90.15	5	1.0076	47.094	105.87		
5	1.4945	40.965	90.04	5	1.1411	52.588	105.94		
15	0.0459	1.419	90.13	15	0.0270	1.466	103.16		
15	0.1340	4.101	90.22	15	0.0997	5.230	104.65		
15	0.2875	8.595	90.52	15	0.1501	7.783	104.98		
15	0.3898	11.492	90.67	15	0.2542	12.925	105.43		
15	0.5741	16.652	90.68	15	0.4108	20.371	105.91		
15	0.6504	18.704	90.74	15	0.5981	28.932	106.20		
15	0.9253	25.953	90.79	15	0.6942	33.144	106.38		
15	1.1282	31.104	90.80	15	0.7889	37.239	106.48		
15	1.2012	32.941	90.78	15	1.0076	46.384	106.67		
15	1.4945	40.141	90.70	15	1.1411	51.774	106.76		
25	0.0318	0.976	90.53	25	0.0270	1.457	103.59		
25	0.0459	1.405	90.56	25	0.0484	2.564	104.45		
25	0.0598	1.828	90.58	25	0.0827	4.347	104.74		
25	0.0982	2.984	90.67	25	0.0997	5.209	104.97		
25	0.1340	4.048	90.74	25	0.1267	6.579	105.13		
25	0.1543	4.650	90.77	25	0.1501	7.752	105.29		
25	0.2451	7.297	90.89	25	0.2034	10.391	105.58		
25	0.2875	8.514	90.94	25	0.2542	12.875	105.74		
25	0.3297	9.710	90.99	25	0.3342	16.698	106.03		
25	0.3898	11.404	91.03	25	0.4108	20.293	106.22		
25	0.4397	12.791	91.07	25	0.4590	22.502	106.35		
25	0.5741	16.458	91.16	25	0.5981	28.763	106.61		
25	0.5884	16.840	91.17	25	0.6482	30.943	106.73		
25	0.6504	18.500	91.19	25	0.6942	32.967	106.77		
25	0.8300	23.202	91.26	25	0.7889	37.021	106.89		

Table 1. The density $(\Delta \rho = \rho - \rho_0)$ and apparent molal volumes $({}^{\phi}V)$ of TRIS and TRIS-HCl in water.

25	0.9253	25.654	91.26	25	0.9007	41.652	107.07
25	1.1282	30.757	91.26	25	1.0076	46.093	107.10
25	1.1338	30.883	91.27	25	1.0977	49.643	107.23
25	1.2012	32.561	91.25	25	1.1411	51.458	107.17
25	1.4945	39.665	91.17	35	0.0270	1.448	104.09
35	0.0445	1.336	91.34	35	0.0997	5.200	105.22
35	0.0859	2.565	91.40	35	0.1501	7.758	105.41
35	0.1246	3.705	91.42	35	0.2542	12.923	105.71
35	0.2280	6.702	91.50	35	0.4108	20.383	106.16
35	0.3764	10.867	91.65	35	0.5981	28.890	106.56
35	0.4620	13.215	91.70	35	0.6942	33.185	106.61
35	0.6292	17.674	91.81	35	0.7889	37.249	106.76
35	0.8056	22.247	91.87	35	1.0076	46.543	106.80
35	0.9881	26.843	91.90	35	1.1411	52.136	106.71
35	1.1294	30.307	91.91	45	0.0270	1.450	104.20
45	0.0445	1.327	91.78	45	0.0997	5.197	105.46
45	0.0859	2.546	91.86	45	0.1501	7.728	105.82
45	0.1246	3.673	91.93	45	0.2542	12.866	106.15
45	0.2280	6.631	92.06	45	0.4108	20.273	106.65
45	0.3764	10.763	92.18	45	0.5981	28.820	106.90
45	0.4620	13.101	92.20	45	0.6942	33.092	106.97
45	0.6292	17.482	92.38	45	0.7889	37.155	107.11
45	0.8056	22.059	92.36	45	1.0076	46.434	107.14
45	0.9881	26.628	92.37	45	1.1411	52.014	107.05
45	1.1294	30.206	92.25				

a. Measured values of ρ_0 at each temperature: 5°C: $\rho_0 = 0.999984$ g cm⁻³; 15°C: $\rho_0 = 0.999100$ g cm⁻³; 25°C: $\rho_0 = 0.997036$ g cm⁻³; 35°C: $\rho_0 = 0.993997$ g cm⁻³; 45°C: $\rho_0 = 0.997036$ g cm⁻³; 35°C: $\rho_0 = 0.993997$ g cm⁻³; 45°C: $\rho_0 = 0.997036$ g cm⁻³; 35°C: $\rho_0 = 0.993997$ g cm⁻³; 45°C: $\rho_0 = 0.997036$ g cm⁻³; 35°C: $\rho_0 = 0.993997$ g cm⁻³; 45°C: $\rho_0 = 0.997036$ g cm⁻³; 35°C: $\rho_0 = 0.993997$ g cm⁻³; 45°C: $\rho_0 = 0.997036$ g cm⁻³; 35°C: $\rho_0 = 0.993997$ g cm⁻³; 45°C: $\rho_0 = 0.997036$ g cm⁻³; 35°C: $\rho_0 = 0.993997$ g cm⁻³; 45°C: $\rho_0 = 0.997036$ g cm⁻³; 35°C: $\rho_0 = 0.993997$ g cm⁻³; 45°C: $\rho_0 = 0.997036$ g cm⁻³; 45°C: $\rho_0 = 0.99$ $0.990151 \text{ g cm}^{-3}$. -3

b. Measured values of
$$\rho_0$$
 at each temperature: 5°C: $\rho_0 = 0.999994$ g cm⁻³; 15°C: $\rho_0 = 0.9999994$ g cm⁻³; 15°C: $\rho_0 = 0.999994$ g cm⁻³; 15°C: $\rho_0 = 0.9$

0.999114 g cm⁻³; 25°C: $\rho_0 = 0.997045$ g cm⁻³; 35°C: $\rho_0 = 0.994003$ g cm⁻³; 45°C: $\rho_0 = 0.994003$ g cm⁻³; 45°C: $\rho_0 = 0.997045$ g cm⁻³; 35°C: $\rho_0 = 0.994003$ g cm⁻³; 45°C: $\rho_0 = 0.9940003$ g cm⁻³; 45°C: $\rho_0 = 0.9940000$ g cm⁻³; 45°C: ρ_0 $0.990159 \text{ g cm}^{-3}$.

Table 2. The density $(\Delta \rho = \rho - \rho_2)$ and apparent molal volumes	(^{<i>PV</i>}) of TRIS and TRIS-HCl in
0.725 mNoCl	
0.725m NaCi.	

	TRIS			TRIS-HCl				
Temp.	m	$10^3 \Delta \rho^a$	${}^{\phi}V$	Temp.	т	$10^3 \Delta \rho^{b}$	${}^{\phi}V$	
(°C)	(mol kg ⁻¹)	$(g \text{ cm}^{-3})$	(cm ³ mol ⁻¹)	(°C)	(mol kg ⁻¹)	$(g \text{ cm}^{-3})$	$(\mathrm{cm}^3 \mathrm{mol}^{-1})$	
5	0.0820	2.404	88.60	5	0.0533	2.693	103.11	
5	0.1209	3.515	88.75	5	0.1177	5.831	103.78	
5	0.1901	5.464	88.91	5	0.1570	7.689	104.11	
5	0.3443	9.622	89.33	5	0.2091	10.107	104.51	
5	0.4564	12.484	89.66	5	0.3939	18.181	105.81	
5	0.5709	15.302	89.95	5	0.5877	26.132	106.63	
5	0.7147	18.655	90.34	5	0.6455	28.389	106.87	
5	0.9103	23.116	90.64	5	0.8265	35.198	107.51	
5	1.1747	28.800	90.99	15	0.0533	2.636	104.24	
15	0.0820	2.363	89.18	15	0.1177	5.731	104.70	
15	0.1209	3.455	89.33	15	0.1570	7.559	105.01	
15	0.1901	5.349	89.60	15	0.2091	9.956	105.31	
15	0.3443	9.388	90.10	15	0.3939	18.022	106.30	
15	0.4564	12.191	90.40	15	0.5877	25.913	107.10	
15	0.5709	14.965	90.65	15	0.6455	28.185	107.28	
15	0.7147	18.317	90.92	15	0.8265	35.003	107.84	
15	0.9103	22.683	91.23	25	0.0428	2.124	104.23	
15	1.1747	28.284	91.55	25	0.0533	2.633	104.43	
25	0.0473	1.372	89.24	25	0.0736	3.614	104.62	
25	0.0814	2.340	89.41	25	0.1177	5.712	105.00	
25	0.0820	2.353	89.45	25	0.1284	6.208	105.10	
25	0.1209	3.440	89.60	25	0.1570	7.540	105.28	
25	0.1442	4.076	89.72	25	0.1845	8.807	105.45	
25	0.1901	5.328	89.87	25	0.2091	9.924	105.61	
25	0.2377	6.584	90.07	25	0.2695	12.619	105.95	
25	0.3443	9.349	90.37	25	0.3439	15.848	106.34	
25	0.3718	10.042	90.44	25	0.3939	17.964	106.60	
25	0.4564	12.137	90.67	25	0.4752	21.369	106.87	
25	0.5549	14.529	90.86	25	0.5760	25.420	107.26	
25	0.5709	14.887	90.94	25	0.5877	25.825	107.41	
25	0.7147	18.214	91.23	25	0.6455	28.071	107.61	
25	0.7207	18.405	91.15	25	0.8073	34.277	107.97	
25	0.9103	22.553	91.54	25	0.8265	34.859	108.18	
25	0.9645	23.806	91.51	25	1.1828	47.605	108.72	
25	1.1747	28.136	91.85					

	25		1.2242	29.293	91.76
	25		1.4833	34.567	91.90
401		a.	Measured v	values of ρ_2 a	at each temperature: 5°C: $\rho_2 = 1.029811 \text{ g cm}^{-3}$; 15°C: $\rho_2 =$
				3 - 0 -	3

- 1.028331 g cm⁻³; 25°C: $\rho_2 = 1.025828$ g cm⁻³.
- b. Measured values of ρ_2 at each temperature: 5°C: $\rho_2 = 1.029798$ g cm⁻³; 15°C: $\rho_2 = 1.028319$ g cm⁻³; 25°C: $\rho_2 = 1.025802$ g cm⁻³.

Table 3. The sound speed ($\Delta U = U - U_0$) and apparent molal compressibilit	ties (^{\$} \$\$) of TRIS and
TRIS-HCl in water. ^a	

		TRIS		TRIS-HCl				
Temp.	m	ΔU	$10^{4 \phi} \kappa$	Temp.	m	ΔU	$10^{4 \phi} \kappa$	
(°C)	(mol kg ⁻¹)	(m s ⁻¹)	(cm ³ mol ⁻¹ bar ⁻¹)	(°C)	(mol kg ⁻¹)	(m s ⁻¹)	(cm ³ mol ⁻¹ bar ⁻¹)	
5	0.0410	1.35	-12.25	5	0.0244	2.35	-44.31	
5	0.0703	2.42	-12.02	5	0.0403	3.90	-43.39	
5	0.1193	4.13	-11.72	5	0.0683	6.57	-42.09	
5	0.1979	6.97	-11.68	5	0.1144	10.88	-40.60	
5	0.3254	11.59	-11.23	5	0.2003	19.11	-39.89	
5	0.5144	18.94	-10.99	5	0.3592	33.72	-37.67	
5	0.7740	29.95	-10.31	5	0.5732	52.62	-35.05	
5	0.9999	44.58	-9.93	5	0.8447	75.70	-32.42	
5	1.3019	57.24	-9.42	5	1.0732	94.48	-30.64	
15	0.0658	3.54	-6.77	15	0.0343	3.03	-33.27	
15	0.1203	6.47	-6.53	15	0.0592	5.22	-32.31	
15	0.1986	10.65	-6.26	15	0.1003	8.96	-32.39	
15	0.3418	18.08	-5.66	15	0.1735	15.11	-30.34	
15	0.5459	28.63	-5.25	15	0.2661	22.93	-29.19	
15	0.7859	40.66	-4.70	15	0.3961	33.72	-27.89	
15	1.1240	57.18	-4.13	15	0.5837	48.79	-26.17	
15	1.4952	74.69	-3.64	15	0.8046	66.07	-24.53	
25	0.0924	4.36	-0.94	15	1.1502	92.02	-22.43	
25	0.1484	7.00	-1.02	25	0.0262	2.09	-26.10	
25	0.2419	11.40	-1.04	25	0.0454	3.64	-25.47	
25	0.3510	16.58	-1.09	25	0.0771	6.21	-25.08	
25	0.5700	26.64	-0.73	25	0.2231	17.87	-23.70	
25	0.8791	40.57	-0.35	25	0.3470	27.49	-22.56	
25	1.1711	53.29	0.00	25	0.5213	40.67	-21.17	
25	1.5074	68.52	-0.09	25	0.7083	54.82	-20.19	
35	0.0607	2.66	1.21	25	0.9516	72.97	-19.16	
35	0.1717	7.47	1.50	25	1.2594	93.28	-17.20	
35	0.2818	12.10	1.90	35	0.0590	4.59	-22.42	
35	0.4638	19.75	2.21	35	0.0961	7.43	-21.90	
35	0.6852	28.82	2.57	35	0.1724	13.15	-20.80	
35	0.9662	40.04	2.94	35	0.2954	22.20	-19.57	
35	1.2570	51.48	3.15	35	0.4484	33.28	-18.45	
45	0.0513	2.08	3.45	35	0.6091	44.43	-17.25	
45	0.0828	3.38	3.31	35	0.7716	56.00	-16.65	
45	0.1444	5.90	3.30	35	1.0428	73.26	-15.01	
45	0.2358	9.38	3.98	45	0.0440	3.30	-20.55	
45	0.3723	14.47	4.60	45	0.0733	5.49	-19.99	
45	0.5246	20.39	4.68	45	0.1206	8.91	-18.97	
45	0.8216	31.77	4.82	45	0.2042	15.10	-18.55	
45	1.0342	39.03	5.24	45	0.3417	24.40	-16.59	
45	1.3265	49.22	5.31	45	0.5243	36.59	-15.14	

45	0.7134	48.90	-14.04
45	0.9159	61.60	-13.03
45	1.1963	78.50	-11.97

- 406a. Values of U_0 calculated from equation of Del Grosso and Mader (1972). 5°C: $U_0 =$ 4071426.16 m s⁻¹; 15°C: $U_0 =$ 1465.92 m s⁻¹; 25°C: $U_0 =$ 1496.67 m s⁻¹; 35°C: $U_0 =$ 1519.79 m408s⁻¹; 45°C: $U_0 =$ 1536.39 m s⁻¹.

Table 4. The sound speed ($\Delta U = U - U_2$) and apparent molal compressibilities ($^{\phi} \kappa$) of TRIS and TRIS-HCl in 0.725m NaCl.

		TRIS		TRIS-HCl				
Temp.	m	ΔU^{a}	$10^{4 \phi} \kappa$	Temp.	m	$\Delta U^{ m b}$	$10^{4 \phi} \kappa$	
(°C)	(mol kg ⁻¹)	(m s ⁻¹)	(cm ³ mol ⁻¹ bar ⁻¹)	(°C)	(mol kg ⁻¹)	(m s ⁻¹)	(cm ³ mol ⁻¹ bar ⁻¹)	
5	0.0638	3.50	-6.80	5	0.0388	3.28	-24.16	
5	0.1057	5.90	-7.35	5	0.0648	5.61	-24.68	
5	0.1686	9.43	-7.31	5	0.1048	9.15	-24.42	
5	0.2490	13.94	-7.09	5	0.1811	15.88	-23.91	
5	0.3727	20.85	-6.73	5	0.3060	26.60	-22.58	
5	0.5283	29.30	-6.06	5	0.4259	36.56	-21.27	
5	0.7176	39.26	-5.23	5	0.5413	46.00	-20.21	
5	1.1232	59.39	-3.65	5	0.7430	61.86	-18.44	
15	0.0812	4.07	-2.86	5	1.0469	85.04	-16.49	
15	0.1431	7.33	-3.16	15	0.0326	2.68	-21.94	
15	0.2502	12.67	-2.52	15	0.0566	4.67	-20.88	
15	0.4286	21.39	-1.72	15	0.1002	8.18	-20.88	
15	0.6899	33.62	-0.65	15	0.1813	14.64	-18.86	
15	0.9596	45.75	0.24	15	0.2910	23.35	-18.86	
15	1.2847	59.78	1.06	15	0.4399	34.85	-17.55	
25	0.0981	4.25	1.57	15	0.6481	50.18	-15.74	
25	0.1702	7.47	1.49	15	0.8789	66.42	-14.05	
25	0.2995	13.26	1.62	15	1.2284	89.46	-12.03	
25	0.4312	19.01	1.98	25	0.0361	2.67	-17.65	
25	0.5681	24.81	2.42	25	0.0596	4.43	-17.44	
25	0.7452	32.50	2.69	25	0.1037	7.83	-17.65	
25	1.0181	43.22	3.55	25	0.1852	13.96	-16.99	
25	1.3754	56.73	4.29	25	0.3166	23.50	-15.63	
				25	0.4963	36.06	-13.94	
				25	0.7246	51.32	-12.12	
				25	0.9553	65.96	-10.58	
				25	1.1341	77.02	-9.68	

411

412	a.	Measured values of U_2 (NaCl) at each temperature: 5°C: $U_2 = 1478.91 \text{ m s}^{-1}$; 15°C: $U_2 =$
413		1513.81 m s ⁻¹ ; 25°C: $U_2 = 1541.02$ m s ⁻¹ .
414	1.	Measured unlines of U (NeCl) at each term protonol 5° C: $U = 1479.97 \text{ m s}^{-1}$; 15° C: U

414 b. Measured values of U_2 (NaCl) at each temperature: 5°C: $U_2 = 1478.87 \text{ m s}^{-1}$; 15°C: $U_2 = 415$ 1513.88 m s⁻¹; 25°C: $U_2 = 1540.83 \text{ m s}^{-1}$.

Table 5. Coefficients for the fits^a of ${}^{\phi}V$ and ${}^{\phi}\kappa$ for TRIS-HCl in water.

		ϕ_V	$10^4 {}^{\phi}\kappa$
	Coeff.	$(\mathrm{cm}^3 \mathrm{mol}^{-1})$	(cm ³ mol ⁻¹ bar ⁻¹)
\overline{X}^{o}	Constant	104.0859	-27.271
	$(T - T_R)$	0.02203	0.49055
	$(T - T_R)^2$	-1.542E-03	-0.016525
	$(T - T_R)^3$	8.28E-05	2.071E-04
$\boldsymbol{\beta}^{(0)X}$	Constant	3.673E-06	-3.686E-05
	$(T - T_R)$	1.802E-06	-1.98E-06
	$(T - T_R)^2$	-3.077E-08	6.201E-08
$\boldsymbol{\beta}^{(1)X}$	Constant	1.31826E-04	-2.36E-04
	$(T - T_R)$	-6.254E-06	1.682E-05
	$(T - T_R)^2$	1.3205E-07	-7.745E-07
$C^{(0)X}$	Constant	-1.0042E-05	-7.42E-06
	$(T - T_R)$	-7.74E-07	1.261E-06
	Std.Err.Fit	0.08	0.21

a. Coefficients fit to equation 18 where $T_R = 298.15$ K is the reference temperature.

Table 6. Coefficients for the fits^a of ${}^{\phi}V$ and ${}^{\phi}\kappa$ for TRIS-HCl in 0.725m NaCl.

		${}^{\phi}V$	$10^4 {}^{\phi}\kappa$
	Coeff.	$(\mathrm{cm}^3 \mathrm{mol}^{-1})$	(cm ³ mol ⁻¹ bar ⁻¹)
\overline{X}^{0}	Constant	103.203	-19.7306
	$(T - T_R)$	0.02403	0.534
	$(T - T_R)^2$	-0.002753	-0.000195
$m^{1/2}$	Constant	5.1124	5.041
	$(T - T_R)$	-0.1116	-0.5261
	$(T - T_R)^2$	-0.002817	-0.03005
m	Constant	0.437	4.307
	$(T - T_R)$	0.1405	0.3506
	$(T - T_R)^2$	0.006775	0.0244
	Std.Err.Fit	0.03	0.20

a. Coefficients to equation 19, where $T_R = 298.15$ K is the reference temperature.

			Water		NaCl	
		${}^{\phi}V$	10 ^{4 ø} ĸ	${}^{\phi}V$	$10^4 {}^{\phi}\kappa$	
	Coeff.	(cm ³ mol ⁻¹)	(cm ³ mol ⁻¹ bar ⁻¹)	(cm ³ mol ⁻¹)	(cm ³ mol ⁻¹ bar ⁻¹)	
\overline{X}^{0}	Constant	90.6331	-1.916	89.1617	1.135	
	$T-T_R$	0.05859	0.3823	0.01039	0.4106	
	$(T-T_R)^2$	-1.38E-04	-6.68E-03	-1.5976E-03	-2.78E-03	
	$\left(T-T_R\right)^3$	3.94E-06	4.75E-06	-	-	
т	Constant	1.4016	2.616	3.9397	1.993	
	$(T - T_R)$	-0.00477	0.0206	-	-0.1348	
•	$(T-T_R)^2$	-	1.233E-03	-1.237E-03	-	
m^2	Constant	-0.696	-0.856	-1.437	0.2784	
	$(T - T_R)$	-	-0.029	-	-	
	$(T-T_R)^2$	-	-	1.127E-03	-2.24E-03	
	Std.Err.Fit	0.05	0.27	0.03	0.21	

Table 7. Coefficients for the fits^a of ${}^{\phi}V$ and ${}^{\phi}\kappa$ for TRIS in water and 0.725m NaCl.

a. Coefficients for equation 20, where $T_R = 298.15$ K is the reference temperature.

		Volu	me (\overline{V}^{0})	Compressib	oility $(\overline{\kappa}^{0})$
	t°C	TRIS	TRIS-HCl	TRIS	TRIS-HC
Water	5	89.37	102.37	-12.27	-45.35
	15	90.03	103.63	-6.41	-34.04
	25	90.63	104.09	-1.92	-27.27
	35	91.21	104.23	1.24	-23.81
	45	91.78	104.57	3.10	-22.41
0.725m	5	88.31	102.25	-8.19	-30.24
NaCl	15	88.90	103.41	-3.25	-23.79
417	25	89.16	103.65	1.14	-18.55

Table 8. The infinite dilution partial molal volume (\overline{V}^0 , cm³ mol⁻¹) and compressibility ($\overline{\kappa}^0$, cm³ mol⁻¹ bar⁻¹) of TRIS and TRIS-HCl as a function of temperature in water and 0.725m NaCl.

Table 9. The change in partial molal volume (ΔV , cm³ mol⁻¹) and compressibility ($\Delta \kappa$, cm³ mol⁻¹ bar⁻¹) from the deprotonization of TRIS-H⁺ calculated with equations 2 and 3.

	t°C	ΔV	$10^4 \Delta \kappa$
	5	3.80	16.47
	15	3.86	15.67
Water	25	4.38	16.44
	35	4.94	18.18
	45	5.12	20.26
0.725m	5	4.40	11.66
NaCl	15	4.60	15.56
	25	5.15	20.12

Table 10. Effect of pressure on the dissociation constant (K^P/K^0) of TRIS-H⁺ in water and 0.725m NaCl as a function of temperature.

K^P/K^0 in water^a

P (bar)	0	200	400	600	800	1000	1200	1400	1600	1800	2000
45°C	1.000	0.964	0.931	0.903	0.878	0.856	0.838	0.822	0.809	0.799	0.792
35°C	1.000	0.964	0.931	0.902	0.877	0.854	0.835	0.818	0.804	0.793	0.784
25°C	1.000	0.967	0.937	0.910	0.887	0.866	0.849	0.833	0.821	0.810	0.802
15°C	1.000	0.970	0.943	0.919	0.898	0.880	0.864	0.851	0.840	0.832	0.826
5°C	1.000	0.969	0.942	0.918	0.897	0.879	0.864	0.852	0.842	0.835	0.830

K^P/K^0 in 0.725m NaCl^b

j	P (bar)	0	200	400	600	800	1000	1200	1400	1600	1800	2000
	25°C	1.000	0.957	0.920	0.887	0.858	0.833	0.811	0.793	0.778	0.766	0.756
	15°C	1.000	0.958	0.920	0.886	0.856	0.829	0.805	0.785	0.767	0.751	0.738
	5°C	1.000	0.958	0.920	0.885	0.853	0.823	0.796	0.772	0.749	0.729	0.710
418												
419	a.	Uncert	tainty in	K^P/K^0 e	stimation	n due to 2	2 x unce	rtainty in	$^{\phi}V$ and	$\phi_{\mathcal{K}} \pm 0.0$	0008 (or	±
420		0.1%).										
421	b.	Uncert	tainty in	K^P/K^0 e	stimation	n due to :	2 x uncer	rtainty in	$^{\phi}V$ and	^ф к: ± 0.0)12 (or ±	: 1.2%).
422												
423												
424												
425												
426												
427												
428												
429												
430												

- 431 Figure 1: Apparent Molal Compressibilities ($^{\phi}\kappa$) of a) TRIS and b) TRIS-HCl in water as a
- 432 function of concentration and temperature. Symbols: direct measurements. Lines: fitted
- 433 values (Tables 5 & 7).

434

- 436 Figure 2: a) Apparent molal volumes ($^{\phi}V$) and b) Apparent molal compressibilities ($^{\phi}\kappa$) at
- **25°C.** Black Circles: measurements in water. White Circles: measurements in 0.725m
- 438 NaCl. Lines: fitted values.

- 442 Figure 3: Percent reduction in dissociation constant for TRIS-H⁺ (K) as a function of
- 443 **pressure and temperature.**

Effect of Pressure on Dissociation Constant (K)

458 Figure 4: Percent reduction in dissociation constant (*K*) as a function of pressure with and

459 without compressibility (x) values. Vertical bars are the uncertainties due to experimental
460 error.

461

Effect of Pressure on Dissociation Constant (K)